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ABSTRACT
Parker’s mean-field model includes two processes generating large-scale oscillatory dynamo waves: stretching of magnetic field
lines by small-scale helical flows, and by differential rotation. In this work, we investigate the capacity of data-driven modal
analysis, Dynamic Mode Decomposition, to identify coherent magnetic field structures of this model. In its canonical form, the
only existing field scale corresponds to the dynamo instability. To take into account multi-scale nature of the dynamo, the model
was augmented with coherent in time flow field, forcing small-scale magnetic field with a faster temporal evolution. Two clusters
of DMD modes were obtained: the “slow" cluster, located near the dynamo wave frequency and associated with its nonlinear
self-interaction, and the “fast" cluster, centered around the forcing frequency and resulting from the interaction between the
wave and the flow. Compared to other widely used methods of data analysis, such as Fourier transform, DMD provides a natural
spatiotemporal basis for the dynamo, related to its nonlinear dynamics. We assess how the parameters of the DMD model, rank
and delay, influence its accuracy, and finally discuss the limitations of this approach when applied to randomly forced, more
complex dynamo flows.
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1 INTRODUCTION

Large-scale magnetic fields play a key role in formation and evo-
lution of planets, stars and accretion discs. In the Sun and some
low-mass stars, these fields evolve periodically in time, resulting in
stellar magnetic cycles (Muñoz-Jaramillo & Vaquero 2019; Saikia
et al. 2016). Mean-field electrodynamics explains sustained large-
scale astrophysical magnetic fields through systematic stretching and
twisting of magnetic field lines by turbulent flows (Parker 1955; Mof-
fatt 1978; Krause & Raedler 1980). This process is efficient when
fluctuating flow D0 and fluctuating field 10 correlate well, so that
the mean electromotive force, or emf Y = hD0 ⇥ 10i, is non-zero.
In mean-field theory, the emf is assumed as a truncated expansion
in the large-scale magnetic field (Charbonneau 2020). In isotropic
turbulent flows non-zero kinetic helicity, the first component of this
expansion is Y8 = UX8 9⌫ 9 . In a nutshell, the dynamo can be described
with the one-dimensional U �⌦ model,

�C = U⌫ + [(�GG � ;2�), (1)
⌫C = ⌦0�G � ⌫3 + [(⌫GG � ;2⌫), (2)

where [ is magnetic diffusivity (Proctor 2007; Richardson & Proctor
2010). The G-coordinate represents latitude or vertical direction in
the flow; ; is an inverse length scale of the field in the other spatial
directions. ⌦-effect corresponds to stretching of poloidal magnetic
field with potential � into toroidal field ⌫ by large-scale differen-
tial rotation ⌦0; U-effect parametrizes generation of � from ⌫ by
helical turbulent motions. Depending on the form of U, equations (1-
2) admit steady or oscillatory linearly unstable solutions of dipolar
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or quadrupolar parity (Richardson & Proctor 2010). The oscillatory
solutions, travelling latitudinally and resembling solar magnetic ac-
tivity, are also known as dynamo waves. Mean-field model (1-2) is
kinematic, i.e. magnetic field grows linearly from a prescribed flow
parametrized by ⌦0 and U. It can be extended to include shear in the
solar tachocline (Charbonneau & MacGregor 1997), flux transport
by meridional flows (Babcock 1961; Leighton 1969; Charbonneau
2014; Cameron et al. 2018), and dynamical feedback of the field on
the flow through Lorentz force (Tobias 1997; Bushby 2003). Large-
scale dynamo cycles observed in direct numerical simulations (DNS)
of convective turbulence are often consistent with the mean-field the-
ory (Schrinner et al. 2011; Racine et al. 2011; Käpylä et al. 2013).

Symmetry-preserving nonlinear term ⌫3 was introduced into (2)
to model saturation of the dynamo instability to a steady state. This
can happen due to expulsion of magnetic flux tubes from active dy-
namo regions by magnetic buoyancy (Parker 1979), the feedback
from the Lorentz force slowing down differential rotation (Gilman
1983) or reducing stretching properties of the flow (U-effect) when
magnetic energy becomes comparable to kinetic energy of the flow
(e.g., Jones et al. 2010). In the astrophysically relevant limit of weak
magnetic diffusion, generation of magnetic field at small scales is
favoured over large ones (e.g., Brandenburg & Subramanian 2005),
implying very low saturation levels for large-scale magnetic fields
(Vainshtein & Cattaneo 1992; Cattaneo & Hughes 1996). How-
ever, numerical simulations of Tobias & Cattaneo (2013) showed
that strong shear, developing in many astrophysical flows, promotes
large-scale dynamo waves by suppressing fluctuations at small scales.
Shear may also facilitate temporally coherent magnetic patterns in
self-sustained magnetorotational turbulence without helical or con-
vective forcing (Nauman & Pessah 2016). Thus, dynamos organize
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at large scales through interactions between turbulence, shear, small-
scale and large-scale fields (see the reviews by Brandenburg (2018),
Rincon (2019), Tobias (2021) and references therein). To understand
these nonlinear interactions, it is necessary to unambiguously iden-
tify coherent dynamo structures in multiscale dynamo models like
state-of-art DNS (with about 106 degrees of freedom).

Spatiotemporal coherence of dynamo waves implies that separated
in space fluid parcels evolve synchronously while waves propagate
through the flow, and there is a particular spatial structure of mag-
netic and velocity fields associated with this wave. Some insight into
this structure can be gained from Fourier transform or wavelet analy-
sis; however, results are inevitably biased towards a priori choice of
spatial and temporal basis inherent in these methods. Another way
is to analyse eigenmodes of the dynamo, obtained by linearizing its
equations about some =-dimensional basic state. However, this lin-
earization is valid only in the vicinity of parameters where it was
performed and does not necessarily capture nonlinear behaviour of
the system away from this region. A more general approach is to
obtain these structures directly from dynamo data using the methods
of data-driven modal decomposition. Frequently applied for analysis
of hydrodynamic turbulence (Taira et al. 2020), they have not been
widely employed in astrophysics; yet they were found useful for tor-
sional magnetic wave detection (Hori et al. 2023). In essence, modal
decomposition is a factorization of the matrix of flow observables
into matrices representing their spatial structure, temporal dynamics,
and amplitudes indicating relative importance of every spatial mode.
Proper Orthogonal Decomposition (POD) produces modes that give
an optimal representation of the flow in terms of energy compared to
any other basis of the same dimension (Lumley 2007; Sirovich 1987;
Holmes et al. 2012); it can mix different time and length scales in
a single mode if their energy contribution is comparable. Dynamic
Mode Decomposition (DMD) seeks for the closest approximation of
the flow data in terms of a linear system, and is efficient for analysing
periodic and quasi-periodic dynamics (Schmid 2010; Bagheri 2010;
Schmid 2022). POD and DMD are entirely data-driven and there-
fore can be applied independently of boundary conditions and flow
complexity. Moreover, compared to empirical temporal analysis such
as Hilbert-Huang transform (Huang et al. 1998), these methods also
provide physically interpretable spatial structures. Unlike Fourier
and wavelet transforms, no a priori spatiotemporal basis is assumed;
both spatial shape and temporal behaviour of the modes result from
the data analysis. Assumptions about linearity and stationarity of the
signals are relaxed for Dynamic Mode Decomposition, as compared
to Fourier transform. As a drawback, DMD requires two empirical,
user-defined parameters, rank and delay, and we will discuss below
the influence of these parameters on decomposition accuracy. POD
and DMD result in large modal bases for very chaotic signals; this is
not the case for dynamo mean-field models analysed here.

In this paper, we will test the applicability of these methods for
detection of scales and their interaction on two dynamo problems:
Parker’s U�⌦model (1-2) and an extended dynamo model featuring
both large and small scales. This paper is structured as follows: in
section 2 we describe the data-driven approach, POD and DMD
methods; in section 3 we apply this methods to analysis of Parker’s
dynamo waves; in section 4 we construct a more complex dynamo
model with scale separation, analyse its dynamics with DMD. In
section 5 we assess the accuracy of the DMD model. Section 6
concludes the paper.
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Figure 1. Time evolution of dynamo waves in system (1-2): magnetic potential
� (top), toroidal component of magnetic field ⌫ (bottom). The data are
collected until C = 100; ⇡ = 30.

2 DATA-DRIVEN APPROACH

Consider the original nonlinear system (1-2) or an analogous one
which evolves the magnetic potential � and the magnetic field ⌫ and
depends on a set µ of dimensionless functions and parameters,

3q

3C
= f=>=;8=40A (q, C,µ), q(C) = (�, ⌫), µ = U,⌦0, [, ; ...

(3)

The functional form of the U-effect and the boundary conditions are

U = �U0 sin(2cG/!), � = ⌫ = 0 at G = 0, ! = 10. (4)

Dynamo number ⇡ = ⌦0U0/[2;3 is the dimensionless parameter
of the system defining frequency of waves; if [ = ; = ⌦0 = 1,
then ⇡ = U0. We solve system (3) numerically in Python spectral
solver Dedalus (Burns et al. 2020), with Chebyshev discretization
of # = 256 points in G and Runge-Kutta time-stepping method.
The dynamo appears as a linear instability in the form of traveling
waves for ⇡ > 20, as shown in figure 1. The initial conditions were of
dipolar parity, with � symmetric and ⌫ antisymmetric in G. This way,
the system is constrained to dipolar solutions; otherwise quadrupolar
dynamos with antisymmetric � and symmetric ⌫ could also appear.

During the simulation, we collect instantaneous spatial profiles
(snapshots) of the numerical solution of the system, q: (G) 2 '# , at
time steps : = 1, 2, . . . , , with frequency sufficient to resolve the
fastest flow dynamics, and assemble them into the data matrix &,

& = [q1 q2 · · · q ], (5)

for further analysis. Here, we performed POD and DMD analysis
separately on the data for � and ⌫, although treating � and ⌫ as a
single system state vector is also possible.

2.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD), also known as Principal
Component Analysis, or Karhunen–Loeve expansion, is based on the
idea that spatial flow correlations can be decomposed into orthogonal
vectors ranked by their energy. Given system state q, defined on the
domain x, POD modes are eigenfunctions of the integral equationπ

hq(x)q⇤ (x0)iq(x0)dx0 = f2q(x), (6)

with autocorrelation function hq(x)q⇤ (x0)i as a kernel, and h. . . i
denoting temporal average. The eigenvalues f2 � 0 correspond to
the average energy content in each mode q, and the first A modes
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Data-driven scale identification in oscillatory dynamos 3

represent more of the system energy then any other spatial basis of
order A . A rigorous introduction to POD analysis for fluid flows can
be found in Holmes et al. (2012, pp. 86-128). For discretized data (5),
modes q are eigenvectors of positive semi-definite correlation matrix
&⇤&. In practice, it is convenient to find q by factorizing the data
matrix & with Singular Value Decomposition (SVD),

& = �⌃+⇤ ⇡ �A⌃A+⇤
A , (7)

which generalizes the eigenvalue decomposition to non-square ma-
trices. The data set is thus represented as a product of the matrix
� of the POD modes q8 , the matrix ⌃ of their singular values f8 ,
and their temporal evolution coefficients + . & is typically low-rank
in fluid flows, so most of the singular values are nearly zero; the
corresponding modes contain very little energy. A common practice
is to retain a subset A of modes with energy content larger than a
threshold, and to discard the rest as noise. To simplify our analysis,
we interpolated all our data from non-equispaced Chebyshev points
to an equispaced grid; otherwise, an energy weight matrix is required
in (6,7) (see Schmidt & Colonius 2020).

2.2 Dynamic Mode Decomposition

Unlike statistics-based POD, Dynamic Mode Decomposition (DMD)
harnesses temporal dynamical behaviour of the flow. It is closely
related to Koopman operator theory, proposing that the temporal
dynamics of nonlinear system (3) can be described with a linear op-
erator acting on suitable flow observables (Koopman 1931). For an
arbitrary nonlinear system, there is no generalized method of con-
structing an exhaustive set of such observables and the operator itself.
DMD provides an approximation to eigenvectors and eigenvalues of
Koopman operator from the data sequence, without calculating the
operator explicitly (Tu et al. 2014). The reader is referred to the com-
prehensive review by Schmid (2022) for a rigorous derivation of the
DMD algorithm and its links to the Koopman theory.

2.2.1 Standard DMD

In this work, we use the “exact" definition of the DMD algorithm
proposed by Tu et al. (2014). We seek to approximate nonlinear
system (3), discretized in time, with a linear operator A that maps
the flow state at time C: to the flow state at time C:+1,

q:+1 = Aq: , where q: =
=’
8=1

k8_
:
8 18 (0), (8)

where 18 (0) is the initial magnitude of the eigenvector k8 . Discrete
eigenvalues _8 define whether k8 are decaying, neutral, or growing
in time. We augment the data matrix (5) with one more snapshot of
the system, and construct another matrix &0, such that

&0 = [q2 q2 · · · q +1], &0 ⇡ A&. (9)

A least-squares approximation to A can be obtained by calculating
the matrix product of the pseudoinverse of & with &0. However, for
low-rank matrices like &, pseudoinverse is ill-conditioned and leads
to spurious results (Press et al. 1992). A workaround proposed by
Schmid (2010) is to construct a lower, A-dimensional representation
of matrix & by truncating its singular value decomposition (7) at
rank A . After this operation, (9) is re-arranged as

&0 ⇡ A�A⌃A+⇤
A , �⇤

AA�A = �⇤
A&

0+A⌃�1
A = AA , (10)

where AA is a projection of A on the POD modes �A . Its eigen-
values and eigenvectors can be calculated from AA k̃ = _k̃. The

full-state eigenvectors in the physical space can be recovered from
A-dimensional k̃ through

k =
1
_
&0+A⌃�1

A k̃, l = ln(_)/�C. (11)

The second equation in (11) relates discrete-time eigenvalues _ to
continuous-time eigenvalues l, both complex. In the following, we
will refer to k and l as DMD modes and DMD eigenvalues. If the
real part of the eigenvalue <(l) < 0, the mode is dampened; if
<(l) > 0, the mode will be growing. In a steady state system, its
significant modes are expected to be nearly neutral, <(l) ⇡ 0. The
imaginary part =(l) is the temporal frequency of the mode.

As in section 2.1, threshold A is user-defined. A common choice
for systems with little noise is to retain first A modes so thatÕ
A fA/

Õ
C>C f = 0.99, retaining 99% information from the original

data set. An alternative cut-off criterion is
Õ2
A f

2
A /

Õ2
C>C f

2 = 0.99,
bearing in mind that f2, and not f, represents the energy of POD
modes in (6). The latter criterion means that 99% of energy is re-
tained and results in a sparser spatial basis. The relative error of the
DMD model can be estimated as

n = | |& �&<>34; | |2/| |& | |2, (12)

where | | · | | is !2-norm and &<>34; is the approximation to &
calculated according to (8).

2.3 High-order (Hankel) DMD

The robustness of DMD in ergodic dynamical systems can be im-
proved by embedding state vectors @: in a higher dimension. Using
the method of delays (Takens 1981), we can construct Hankel matrix
&� from the original data (5) as

&� =

266666664

q1 q2 · · · q �3+1
q2 q3 · · · q �3+2
...

...
...

q3 q3+1 · · · q 

377777775
, (13)

where 3 is the delay parameter, and augment (9) in the same way.
This is done because our initial choice of system observables, q: , is
not necessarily contained within the finite-dimensional invariant sub-
space of the Koopman operator. In Hankel matrix (13), we increased
the number of observables: the matrix rank of &� is higher then the
rank of &. Arbabi & Mezic (2017) proved that in the limit 3 ! 1
DMD eigenvalues and eigenmodes approximating the system

&0
� ⇡ A&� . (14)

converge to Koopman modes and eigenvalues from the finite-
dimensional invariant subspace of A. Hankel DMD is also viewed
as a higher-order approximation of (9) (Le Clainche & Vega 2017).

Construction of (13) introduces another user-defined, delay pa-
rameter 3, and its choice is not straightforward. Takens (1981) stated
that an attractor of dimension < can be embedded into a space with
3 = 2< + 1 dimensions. Broomhead & King (1986), considering
physically relevant time scales of the system, suggested to choose 3
so that the SVD spectrum of (13) converges as the window length of
delay C:+3 � C: is varied. In practice, 3 is increased until the desired
accuracy of approximation is achieved in the sense of !2-norm (Fujii
et al. 2019).

3 PARKER’S DYNAMO WAVES

As a benchmark problem, we take the system (1-2) augmented with
(4), as described in the beginning of section 2. We analyse the steady-
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state data sets of toroidal magnetic field ⌫ and poloidal magnetic
potential �, depicted in figure 1.

3.1 POD decomposition

Figure 2(a) shows the singular value spectrum of � and ⌫. The
spectrum decays rapidly, indicating the low rank of the data and
absence of noise. ⌫ has more complex structure, with 4 modes needed
to describe 99% of the data set according to f-criterion, compared to
2 modes for �. This difference can be attributed to the nonlinear term
⌫3 in equation (2), and therefore more complex dynamics. Potential
� is influenced by this nonlinearity only indirectly through U-effect.
According tof2-criterion, 99% of energy in both � and ⌫ is captured
by the first two modes. The singular values of � and ⌫ come in nearly
equal pairs, a common feature in fluid flows with symmetries (Deane
et al. 1991). The dipolar symmetry implies that

G ! �G, �! �, ⌫ ! �⌫. (15)

If the solution of (3) is invariant under the action of symmetry group
⌧, and q(G) is an eigenfunction of (6), then for every element 6 2 ⌧
such as (15), 6 � q is also an eigenfunction of (6) with the same
eigenvalue (Aubry et al. 1993, Proposition 3).

The POD modes, corresponding to the singular value pairs, are
shown in Figure 2(b). Following the fields parity in figure 1, the
�-modes q�0�3 are symmetric, and ⌫-modes q⌫0�3 are antisymmetric
with respect to G. The most energetic modes q�0,1, q⌫0,1 are large-scale
and correspond to the length scale of the dynamo wave observed in
figure 1. The spatial scale of the second, less energetic mode pair
is approximately two times smaller, and its temporal dynamics is
faster. Each mode in the pair q⌫0,1 (or q�0,1), weighted by its temporal
coefficient (see equation 24 in section 5), corresponds to a standing
wave shifted in phase with respect to the other (figure 2c, upper and
middle panel). They enhance each other at some spatial locations,
and weaken at others, producing travelling wave dynamics observed
in figure 2 (c), bottom panel. The relative error between this 2-mode
model and toroidal field ⌫ in figure 1, evaluated as !2 norm, is only
3.7%.

3.2 DMD decomposition

We calculate the DMD eigenmodes and eigenvalues of the dynamo
waves in figure 1 using the algorithm in section 2.2. The previous
section shows that truncation of rank A = 4 is sufficient to reproduce
the data reliably. As they are real, the matrix AA in (10) is also real
and its eigenvalues come in complex conjugate pairs with nearly zero
real parts, as shown in table 1.

The first frequency pair, =(l0,1) = ±3.558, corresponds to the
frequency of dynamo linear instability at ⇡ = 30, and is the main
frequency observed in figure 1. The second frequency is three times
larger than the first one, =(l2,3) ⇡ 3=(l0,1), and can be inter-
preted as an interaction of the first mode with itself through nonlin-
ear damping ⌫3 in (2), as the periodic temporal behaviour implies
sin3 (l) ⇠ sin(3l). Note the implication of choosing f or f2 cut-
off: if only 2 POD modes are retained according to f2-criterion, the
dynamics will be projected on the most energetic, slowly oscillating
modes, and the fast-oscillating modes will not be recovered. The
choice of cut-off A is therefore a balance between desired accuracy
and basis sparsity.

The first two panels in figure 2(d) show the “slow" DMD modes
of � and ⌫; one can observe that the G-profile of the real parts
of modes is similar to one of the corresponding POD mode pairs

Mode l� l⌫

0, 1 �7.401 · 10�7 ± 3.558i �9.525 · 10�6 ± 3.558i
2, 3 �1.063 · 10�4 ± 10.673i �1.257 · 10�3 ± 10.675i

Table 1. DMD eigenvalues of potential � and toroidal magnetic field ⌫,
obtained based on A = 4 truncation of the data. The modes are ranked by their
growth rates (less decaying first). The eigenvalues were rounded up to third
digit.

in figure 2(b), while their imaginary part is resembles the other.
Like the eigenvalues, the DMD modes are also complex conjugates,
k⇤1 = k0, thus, their real parts are equal, and their imaginary parts
have equal magnitude along G but opposite signs. This allows to
represent the travelling wave structures similar to the lower panel in
figure 2(c) with just one complex DMD mode k0 and its temporal
coefficient. Indeed, consider a DMD mode k0 (G) = kA +k8 i, and the
corresponding projection of the data set on this mode, 20 (C) = 2A+28 i.
One-mode approximation for the data matrix & would be

& ⇡ kA 2A � k828 + (k82A + kA 28)i. (16)

When the corresponding contribution from the conjugate mode k1
will be added, the imaginary part of (16) will be cancelled, as the
data matrix & is real; the real part will be double of that of (16).
Thus, it is enough to track one mode from the complex-conjugate
pair in � and ⌫, and DMD provides a more compact vector basis for
this system compared to POD. In the following, we will focus on the
DMD approach.

4 MULTI-SCALE DYNAMO MODEL

Parker’s dynamo model (1-2) parametrises interaction of small-scale
dynamo and turbulence with U-effect. Thus, it has only one indepen-
dent time and length scale, related to the dynamo linear instability at
large scales. The second, faster and smaller length scale, identified
by POD and DMD, is the result of magnetic field interacting with
itself. It is also very weak, less than 1% of the total magnetic energy,
as can be seen in figure 2(a). However, it is not the case for more
realistic numerical models of dynamo where waves arise naturally
from shear turbulence. In those simulations, the flow is driven by a
combination of large-scale shear and a small-scale forcing, coher-
ent or randomized, and energy is distributed on a range of scales
(Tobias & Cattaneo 2013; Pongkitiwanichakul et al. 2016; Nigro
et al. 2017). More advanced dynamo models allow to integrate large
and small-scale dynamics simultaneously, for example, with a shell
model describing behaviour of velocity and magnetic fields at small
scales (Nigro & Veltri 2011). In line with such models, we augment
system (1-2) with extra terms, mimicking the multi-scale flow be-
haviour in the DNS, and study whether DMD can recognize mixed
small and large scales of the system. The augmented one-dimensional
kinematic dynamo equations are

�C = Y + [(�GG � ;2�), (17)
⌫C = ⌦0�G � ⌫3 + [(⌫GG � ;2⌫), (18)
1C = `DG⌫ � W13 + [(1GG � ;21), (19)

Y = Y06(D1), 6( 5 ) = 1p
2cf

exp(� G2

2f2 ), (20)

D = D0 sin(2c:DG/! ± lDC). (21)

Temporal and spatial evolution of the small-scale flow field D is
prescribed by (21). Equation (19) describes the evolution of small-
scale fluctuations 1 of toroidal magnetic field and is inspired by
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Figure 2. (a) Singular value spectrum of the dynamo waves in figure 1, system (1-2). Empty symbols, f8/
Õ

8 f, filled symbols, f2
8 /
Õ

8 f
2. Dashed line

represent 99% cut-off for both f- and f2-criteria. (b) The first four POD modes of dynamo waves. Solid line, the first of the POD mode pairs in panel (a);
dashed: the second mode in the pair. (c) Reduced model of the dynamo waves in figure 1 based on: top, q⌫

0 ; middle, q⌫
1 , bottom: q⌫

0 and q⌫
1 together. (d)

DMD modes of the dynamo waves, calculated using the first four POD modes from panel (c). Solid lines: the first mode of the complex-conjugate modal pair.
The real part of the mode is represented by a darker color and the imaginary part by a lighter (gray) color. Dashed, the same but for the second mode k1 in the
pair k⇤

1 = k0 (only for k�
0,1).

the full induction equation for magnetic fluctuations, see e.g. Tobias
(2021, p. 29). Since the latter is nonlinear in fluctuations due to the
termsr⇥(D0⇥10�D0 ⇥ 10), nonlinearity affects all scales of magnetic
field, and dynamo should be able to saturate at both small and large
scales in statistically steady flows. Exact mechanism of this saturation
is still a subject of active research (Moffatt & Dormy 2019). For
simplicity, we introduce the same form of nonlinearity W13 into (19),
which allows to control the saturation amplitude of 1. The dissipative
term in (19) is proportional to 1GG ; `DG⌫ models generation of 1
through interaction of the flow and the large-scale field. Parameters
W and ` are introduced to control the strength of nonlinearity and
the induction-like term, respectively, in this simplified mathematical
model of a multiscale dynamo. In a more realistic DNS simulation,
signals from ⌫ and 1 would be mixed in multiscale magnetic field,
⌫B = ⌫+1. The interaction between 1 and D contributes to fluctuating
electromotive force, proportional to D1. Net emf Y = Y06(D1) on the
scale of the dynamo waves in (17) is calculated by filtering product
D1 with a Gaussian filter (20) and ensuring Y = 0 at the boundaries
G = 0, !. Alternatively, time averaging or envelope smoothing can
be employed to model action of emf on large scales.

Dynamo waves were consistently observed when Y0 > 800 and
the rest of parameters set to ⌦0 = [ = ; = 1, ` = 5, D0 = 0.5.

We set W = 0, allowing the dynamo to saturate only through large
scales. Large value of f = 30 removes completely small-scale fluc-
tuations from Y and thus inhibits non-oscillatory dynamo solutions
(Richardson & Proctor 2010). Frequency lD and wave number :D
of small-scale D were set to lD = 13, :D = 13 to ensure a faster
temporal dynamics with respect to the dynamo wave and at least a
decade of scale separation between the wave and the small-scale dy-
namo. Figures 3(a,c) show results of numerical integration of (17-21)
with these parameters and Y0 = 1500. The large-scale field ⌫ is again
dipolar, anti-symmetric with respect to the equator; it is the dominant
feature of the dynamo waves observed in the total magnetic field ⌫B .
However, it is spatially and temporally modulated, allowing locally
wider regions of positive and negative field direction. These differ-
ences appear because spatial distribution of net emf departs from the
one in “classic" dynamo waves. On the other hand, the fluctuating
field 1 in figure 3(c) is predominantly small-scale, but yet with a sys-
tematic footprint from the large-scale ⌫, symmetric with respect to
the G/! = 0.5. Fast Fourier Transform (FFT) of multiscale magnetic
field ⌫B over the temporal domain, with resulting spatial Fourier
modes integrated in G, shows that the temporal dynamics in this sys-
tem is complex and features numerous frequencies (figure 4a). The
most prominent peaks are clustered around the dominant dynamo
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(a) (b)

(c) (d)

Figure 3. The data obtained by integrating in time multi-scale dynamo equations (17-19). Without imposed U-effect: multi-scale toroidal magnetic field
⌫B = ⌫ + 1 (a) and fluctuating toroidal magnetic field 1 (b); flow and emf given by (20-21). System with controlled U-effect: ⌫B (c), 1 (d); flow and emf from
(22-23). See text for description of the system parameters.

ingredients: the “slow" cluster corresponding to the dynamo wave
and the “fast" cluster around the flow frequency lD. Other degrees
of freedom are excited in between these peaks, so the spectrum in
the “slow" cluster is relatively broad-band, which complicates iden-
tification of dynamo waves, small scales, and their interaction. It is
thus of interest to construct a multiscale dynamo system featuring a
well-defined U-effect as in (4).

4.1 Imposing U-effect

For this, we add one more component to the flow velocity,

D = D0 (sin(cG/!) + sin(2c:DG/! ± lDC)), (22)

so that magnetic fluctuations scale as 1 ⇠ cos(cG/!)⌫. If electro-
motive force is defined as

Y = �Y06(D1) ⇠ sin(2cG/!)⌫, (23)

then U-effect is similar to (4), yet dynamo waves appear from in-
teraction of the flow and small-scale magnetic field. Formally, the
extra component in (22) can be interpreted as a large-scale one, al-
though it is not constant in G compared to mean differential rotation
⌦0 in (18). Magnetic fluctuations will thus contain direct interaction
of this component in (22) and large-scale magnetic field in induction
equation (19), unlike in the mean-field theory. This inconsistency is
resolved in the previous multiscale dynamo system (17-21) without
imposed U-effect, where large-scale shear interacts with ⌫ indirectly
through ⌦0�G and DG⌫. Controlling U-effect in this way allows to
obtain a multiscale dynamo with few degrees of freedom, where large
scales are similar to Parker’s dynamo waves (1-2).

We perform a numerical simulation of augmented model (17-19),
together with (22-23), with dipolar initial conditions. Model param-
eters were set to Y0 = 30, ⌦0 = ; = ` = 1, [ = 0.1, D0 = 0.5,
f = 10, lD = 13, :D = 13, resulting in “classic” large-scale dynamo
waves with a period ) ⇡ 20, about ten times longer (figure 3b). The
small-scale nonlinearity was set non-zero, W = 10, in order to reduce
the magnitude of 1 to values below those of large-scale ⌫ (figure 3d),
as in dynamo without imposed U-effect. The data were collected up
to ) = 200, covering about 10 periods of wave evolution and thus
resolving both slow and fast dynamics. As previously, 1 is mostly
small-scale with a symmetric footprint of the large-scale field, aris-
ing through forcing of 1 with the product of anti-symmetric DG and

anti-symmetric ⌫. Note the difference with multiscale dynamo sys-
tem (17-21): the sign of the large-scale footprint in 1 is periodic in
time, following the sign of DG⌫ ⇠ cos(cG/!)⌫. This is less apparent
in figure 3(c) because the product of ⌫ and DG remains small-scale.
The resulting multi-scale magnetic field, ⌫B = ⌫+ 1 is thus of mixed
parity with respect to G; however, since the magnitude of 1 is about
2 times smaller than the one of ⌫ and contains a significant energy
contribution from small scales, this asymmetry very weak. FFT trans-
form of ⌫B in time shows much simpler temporal dynamics, with just
a few dominant frequency peaks (figure 4b). In the following, we will
analyse this mixed signal ⌫B with DMD, discarding transients up to
C = 50.

4.2 DMD of the model with imposed U-effect

As before, we perform dimension reduction of the mixed magnetic
field ⌫B with POD. The largest singular values still come in pairs, as
⌫B visibly retains some degree of symmetry. Circles in figure 4(c)
denote the cumulative contribution of the first 8 POD modes to the
full data set, both in terms of f and f2. As expected, the cumulative
energy of the modes

Õ
8 f

2
8 grows faster than

Õ
8 f8 : only 5 modes

are necessary to reproduce 99% of energy in the flow, compared to
14 according to f-criterion. However, with such a small A only the
principal dynamo wave with l0 is captured correctly with DMD and
spurious eigenvalues appear. We thus perform DMD on the POD
basis of rank A = 14.

Two mode clusters are detected in the DMD spectrum of ⌫B :
low-frequency modes l0�2 with =(l) < 3 and high-frequency
modes l3�6 with =(l) > 10 (figure 4b). The mode k0 with the
slowest oscillation frequency =(l0) ⇡ 0.282 corresponds to the
dynamo wave, with a shape similar to the Parker’s dynamo wave
(figure 2c). It is the large-scale oscillation visible in figure 3. The
other frequencies of the slow-evolution cluster, =(l1) ⇡ ±3=(l0),
=(l2) ⇡ ±5=(l0), correspond to the nonlinear interactions of the
mode k0 with itself through the nonlinearities 13, ⌫3 in (18-19),
as shown in section 3.2. The weaker frequency component =(l2)
appears through secondary interaction of l0 and l1 in this non-
linearity, consider, for example [sin(l0) + sin(3l0)]3. Despite be-
ing dynamically related, the characteristic spatial length scale of
the modes k1, k2 is smaller then the length scale of the large-
scale dynamo wave k0 (figure 4d). The eigenvalues in the second,
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Figure 4. Mode identification of multiscale magnetic field ⌫B . (a) Amplitudes and frequencies of the DMD modes, compared with FFT of the data (dashed) of
dynamo waves from (17-21), without imposing U-effect (figure 3a). Filled circles, standard DMD of rank A = 14; filled squares, Hankel DMD with A = 14 and
delay 3 = 20; empty squares, Hankel DMD, A = 4, 3 = 20. Dots corresponds to high-rank Hankel DMD, A = 40, 3 = 300. Only positive DMD frequencies are
shown. (b) FFT (dashed) and DMD spectrum of the model with imposed U-effect (figure 3b). Filled circles, standard DMD of A = 14; filled squares, Hankel
DMD with rank A = 14 and delay 3 = 9; empty squares, Hankel DMD, A = 6, 3 = 9; dots, high-rank Hankel DMD, A = 22, 3 = 10. Crossed-out circles
correspond to spurious eigenvalues that appear in high-rank models (A = 22) without increasing 3. (c) Cumulative singular value spectrum of the multi-scale
dynamo model with (circles) and without (solid lines) imposed U-effect. Dark blue, f2; light blue, f. Vertical lines denote 99% cut-off in both spectra
(
Õ

8 f8 (f2
8 )/

Õ
C>C f (f2 ) = 0.99 , dashed). (d) Profiles of DMD modes k0, k1, k2 (slow cluster) and k4 (fast cluster). Solid, with imposed U-effect; dashed,

without imposed U-effect.

“fast", cluster are located around the forcing frequency lD = 13,
but none of them coincides with it exactly. Instead, they are result
of interaction of the modes in the slow-evolution cluster, k0,1, with
the forcing D. Indeed, the nonlinear terms in model (17-19) imply
1C / DG⌫ / cos(±lDC) exp(l0,1C) / ±lD ± =(l0,1). The time-
dependence of the DMD modes is exponential according to (8) and
(11), so their interactions will contain all possible combinations of
sine and cosine functions. Length scales of these faster oscillating
modes are much smaller than length scales of the slow modes (see
figure 4d).

Comparison of DMD frequencies and amplitudes with FFT results
in figure 4(b) allows to evaluate DMD performance. The optimal
amplitudes of each DMD mode were calculated using the best-fit
of the data matrix & onto the DMD modes Jovanović et al. (2014).
Although standard DMD of rank A = 14 captures both fast and
slow frequency clusters, the agreement with FFT is imperfect. The
DMD amplitudes of the modes l2�6 are larger compared to the
FFT amplitudes; weaker DMD eigenvalues of the “fast" cluster, l3

and l6, are shifted towards slower frequencies; these less energetic
modes are captured by standard DMD with less precision.

To improve DMD accuracy, we use the method of delays (Hankel
DMD), as described in section 2.3. We increase the delay parameter
up to 3 = 9, and keep the rank A = 14 to compare with the stan-
dard approximation. Hankel DMD identifies the same dynamical
components of ⌫B as standard DMD; however, the weak dynamical
components with frequencies l2, l3 and l6 are now in a better
agreement with FFT results (figure 4b). The real parts of both weak
and strong modes become considerably more neutral (see figure A1a).
Combined with reducing rank A , Hankel DMD leads to more com-
pact yet physical representation of the system dynamics. Consider a
reduced-rank DMD decomposition, A = 6, of the augmented Hankel
matrix &� with delay 3 = 9. Although only one additional degree
of freedom was allowed compared to A = 5 from f2 cut-off, the
principal dynamical modes l0, l4, l5 with the largest amplitudes
are identified correctly (figure 4b). See table 2 for a list of detected
DMD eigenvalues and Appendix A for further discussion on DMD
accuracy as a function of rank and delay.
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With imposed U-effect Without imposed U-effect Interpretation

DMD, HDMD HDMD FFT DMD HDMD HDMD
A = 14 A = 6, 3 = 9 A = 14, 3 = 9 A = 14 A = 14, 3 = 20 A = 40, 3 = 300

Sl
ow

l0 0.282 0.282 0.282 0.209 0.257 0.244 0.229 Dynamo wave, =(l0 )
l1 0.845 0.847 0.670 0.687 =(l1 ) ⇡ 3=(l0 )
l2 1.435 1.426 1.131 1.267 1.145 =(l2 ) ⇡ 5=(l0 )

1.591 1.499 0.687 ⇡ 7.6=(l0 )
2.052 2.061 ⇡ 9.9=(l0 )
2.512 2.519 ⇡ 12.0=(l0 )

Fa
st

11.850 11.237 11.781 11.854 =(lD ) � =(l2 )
l3 11.871 12.152 12.311 12.313 =(lD ) � =(l1 )
l4 12.715 12.715 12.718 12.772 12.790 12.758 12.771 =(lD ) � =(l0 )
l5 13.279 13.282 13.282 13.232 13.263 13.238 13.229 =(lD ) + =(l0 )
l6 13.694 13.847 13.693 13.687 =(lD ) + =(l1 )

14.153 14.108 14.145 =(lD ) + =(l2 )

26.031 Higher-order interaction
5.404, 3.567 Spurious

Table 2. Imaginary part of DMD eigenvalues (frequencies) of the total magnetic field ⌫B = ⌫ + 1 from the dynamo models with and without imposed U-effect,
obtained with standard and Hankel DMD for different values of rank and delay. The parameters are specified in the header; the frequencies were rounded up
to the third digit. Only frequencies of peaks with the amplitude at least 0.001 of the dominant one are shown. FFT frequencies in the dynamo with imposed
U-effect are the same as those recovered with Hankel DMD with A = 14, 3 = 9.

4.3 DMD of the dynamo without imposed U-effect

After identifying the dominant interactions in the system with a
well-defined U-effect, it becomes straightforward to perform the
same analysis on the original multiscale dynamo system (17-21).
We analyse the modified dynamo waves in figure 3(a), discarding
transients. As mentioned before, FFT of these data (figure 4a) also
results in a “slow" frequency cluster around the dynamo wave with
=(l0

0) = 0.209 and the “fast" one around lD. Here primes are
used to distinguish these frequencies from those with imposed U-
effect in section 4.2. Analysis of the dominant frequency peaks of
this spectrum in table 2 shows that the “fast" cluster corresponds to
quadratic interactions of lD with magnetic field. Without a priori

defined large-scale U-effect, the spectrum of the “slow" modes be-
comes more broad-band; nevertheless, principal interactions of the
dynamo wave with itself corresponding to =(3l0

0), =(5l0
0), are still

discernible. Higher frequencies of this cluster, =(9.9l0
0) , =(12l0

0)
are potentially influenced by interactions through quadratic terms,
but their magnitudes are weak. After these interactions, the energy
is further transferred downscale, and so additional weaker frequency
peaks appear around 2lD = 26 (table 2). As this frequency cluster
has much lower energy, it was not shown in figure 4a.

The singular value spectra of this system are similar to those with
imposed U-effect (solid lines in figure 4c), with the difference that
the first pair of POD modes contains more energy, as the amplitude
of the large-scale field is stronger in this case (figure 3a,c). It is
thus sufficient to use 4 POD modes according to f2- and 14 modes
according to f-criterion for subsequent DMD decomposition. In fig-
ure 4(a), we compare resulting frequencies of DMD modes with the
FFT spectrum of the field. In this case, standard DMD decomposi-
tion with A = 14 according to f-criterion reliably identifies only the
large-scale dynamo wave with =(l0) and two strongest modal pairs
of its quadratic interaction with the flow, =(l4), =(l5). The rest of
the DMD eigenvalues either approximate several dynamical compo-
nents of the spectrum when located in between dominant peaks, or
do not correspond to energetic flow structures and thus are spurious
(table 2). In this case, using Hankel DMD is crucial to improve scale

detection. Using delay of 3 = 20 allows to resolve the “slow" fre-
quency 5=(l0) and its interactions with the flow from the “slow"
cluster, as well as to approximate second-order quadratic interactions
proportional to 2lD. As previously, Hankel DMD with 3 = 20 al-
lows to use low, f2 model rank A = 4 and to capture both fast and
slow dynamics using only two pairs of complex-conjugate modes.
Finally, increasing further the values of rank and delay, to A = 40 and
3 = 300, allows to detect all energetic spectral peaks in figure 4(a).

Spatial shapes of the modes in the “fast" and the “slow" clusters
highlight some differences in dynamics of the two systems. In the
system without imposed U-effect, DMD modes are slightly more
symmetric with respect to G/! = 0.5, as 1 has much less pro-
nounced systematic time-periodic component (figure 3). The first
two complex-conjugate DMD modes with the dominant frequency
=(l0) are able to reproduce the spatial modulation in figure 3(a),
indicating that it is related to the spatial shape of filtered U-effect. As
the nonlinearity W13 was set to zero in this model, the “slow" modes
l0,l1 andl2 remain large-scale (figure 4d), while the spatial distri-
bution of small-scale modes from the “fast" cluster is nearly identical
both dynamo systems. Except for these features, the systems with and
without imposed U-effect have qualitatively similar dynamics.

5 VALIDITY OF LINEAR APPROXIMATION

In the following, we analyse how Hankel DMD improves scale de-
tection on the data from multi-scale dynamo system with imposed
U-effect (17-20), (22-23). As this system has fewer dynamical com-
ponents (figure 4b), it allows to track easily the influence of varying
parameters of DMD model on detection and properties of individual
modes without increasing computational complexity. We leave the
corresponding analysis of the multi-scale dynamo without imposed
U-effect for the future work.

DMD approximates the flow dynamics with a linear system; how-
ever, the actual temporal evolution of DMD modes can be more
complex than the one prescribed by (8). According to (8) and (11),
temporal coefficients 2!8 (C) of the DMD modes k8 are defined by
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Figure 5. Temporal evolution of DMD modes as a function of time. Solid, instantaneous (actual) coefficients 2�8 ; dashed, coefficients of the linear model 2!8 .
Only real part of 28 is shown. (a) 20, dynamo wave, standard DMD with A = 14. (b) 22, corresponding to the mode k2, standard DMD with A = 14. (c) 26,
corresponding to the mode k6, Hankel DMD, A = 14, 3 = 9. (d) 22, Hankel DMD, A = 14, 3 = 9. (e) 22, Hankel DMD, A = 22, 3 = 10 (dashed, in red); 2�2
obtained with standard DMD is given in blue for comparison. See table 2 and figures 4(b-d) for mode description.

DMD eigenvalues through 2!8 (C) = exp(l8 C)18 (0). This linear model
allows either growing or decaying in time oscillating modes. How-
ever, we can also evaluate actual instantaneous temporal coefficients
of the modes, 2�8 (C), from the data. This is done using non-orthogonal
projection of the data matrix & on the matrix of DMD modes  ,

c� (C) =  †&. (24)

where  † denotes its pseudoinverse. By comparing 2�8 (C) and 2!8 (C),
we can assess how linear is the dynamics of the 8-th DMD mode.

Figure 5(a) compares 2�0 (C) and 2!0 (C) of the dynamo wave mode
k0. Excellent agreement between the two indicates that the dynamo
wave component evolves essentially linearly. The energetic modes
from the “fast" cluster,k4 andk5, also feature nearly linear dynamics
but faster frequencies (not shown here). These modes are represented
relatively accurately both by DMD and Hankel DMD. On the other
hand, the actual temporal dynamics of weaker modes k2, k3 and k6
in both “slow" and “fast" clusters is not entirely linear. In figure 5(b)
we illustrate this on the temporal coefficient 2�2 (C) of the mode with
l2. This mode, besides the principal oscillating frequency, exhibits
a slower modulation on the time scale comparable to the one of k0.
When |2�2 (C) | is large, it is contaminated by a faster evolving signal.
The corresponding linear coefficient 2!2 (C) is identified by the stan-
dard DMD as decaying (see negative real parts of the corresponding
DMD eigenvalues in figure A1a), and rapidly becomes out-of-phase
with the actual coefficient 2�2 (C). The k2 component is thus quickly
lost in the linear DMD model.

Callaham et al. (2022) showed that POD and DMD modes of
a flow with two principal frequencies are nonlinearly correlated
through triadic interactions, creating mixed-frequency content. In
our augmented system, the nonlinearity is more complex, with both

quadratic and cubic terms. Quantitative estimation of these corre-
lations is thus out of scope of this work. Nevertheless, we iden-
tify the presence of mixed frequency dynamics from the temporal
coefficients qualitatively. From equations (18-19), the mode with
eigenvalue l2 appears through cubic interaction between the dy-
namo wave l0 and its first nonlinearity with =(l1) = 3=(l0) as
[exp(l0) +exp(3l0)]3. When expanded, this gives the following set
of harmonics: [exp(3l0) + 3 exp(5l0) + 3 exp(7l0) + exp(9l0)].
In the FFT of 2�2 (C) (not shown for brevity), all these harmonics
are present, and the frequency content of 7=(l0) is only 10 times
weaker than the principal signal frequency, =(l2) ⇡ 5=(l0). The
fast-oscillating contribution to the time series of 2�2 (C) corresponds to
the frequencies of =(lD ±l2), i.e., interaction of k2 and the small-
scale part of the flow D. Thus, DMD decomposition of rank A = 14
mixes these dynamical components in a single one. The weak modes
k3, k6 from the “fast" modal cluster are also modulated, although
less then k2 (figure 5c).

We introduced delay in the data with Hankel DMD to see whether
this prediction improves, while keeping the model rank A = 14. It
can influence the results in two ways: first, by identifying modal
frequency and amplitude more precisely; and second, by obtaining
a spatial modal basis that is closer to Koopman eigenvectors of the
system. In our case, the changes in spatial shape of mode k2 (G) were
minor; but its eigenvalue l2 was identified as less dampened (fig-
ure A1a). The mode now decays much slower and its linear temporal
evolution represents the real system well at early times (figure 5d).
Eventually, it gets out of phase with the instantaneous modal coeffi-
cient, indicating that the temporal signal of k2-mode is still mixed-
frequency. Hankel DMD also recovers modes with l3 and l6 as
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nearly non-decaying and in-phase with the actual signal (figure 5c),
when standard DMD would result in rapidly decaying, out-of-phase
behaviour similar to figure 5(b).

Further improvement is achieved by increasing rank A beyond the
one given by f-criterion, as shown by high-rank DMD results in
figure 4b (red dots). The rank of A = 20 and delay 3 = 6 are large
enough to separate the weakest dynamical components with 7=(l0),
=(lD ±l2) from the mode k2. Then, the temporal coefficient 2�2 (C)
becomes uncorrelated with them (figure 5e), the corresponding mode
k2 behaves linearly and according to (8). With smaller delays, these
additional dynamical components are not recovered and spurious
eigenvalues appear (crossed-out circles in figure 4b).

6 CONCLUSIONS

In this work, we used Proper Orthogonal Decomposition and
Dynamic Mode Decomposition for scale identification in one-
dimensional dynamo models. Our first benchmark model belongs
to a family of U � ⌦ dynamos suggested by Parker (1955), Proctor
(2007) and Richardson & Proctor (2010), among others. We found
that POD and DMD modes of this system have similar spatial shapes;
in fact, DMD can be viewed as a rotation of the POD basis (Calla-
ham et al. 2022). However, complex-conjugate DMD modes give a
sparser dynamical basis for the oscillating dynamo. We identified the
modes corresponding to the dynamo wave, and the modes appearing
due to the nonlinear damping term ⌫3 in the model. Together, these
two DMD modes form an accurate linear model of the dynamo.

The shortcoming of the benchmark dynamo model is that it has
only one independent dynamo wave component. We constructed two
qualitative augmented dynamo models featuring both the dynamo
wave and the small-scale magnetic field forced by the flow, with and
without imposed U-effect. The aim of these reduced models was not
to reproduce the mean-field dynamo theory in a predictive way but
rather to create an clear benchmark for DMD analysis in multiscale
dynamos. By choosing the frequency of the flow, we separated dy-
namically relevant scales in space and time in both models. DMD
eigenvalues of this dynamo were located in two regions of the com-
plex plane: the “slow" cluster near the dynamo wave with frequency
=(l0), and the “fast" cluster, centered about the small-scale flow fre-
quency lD. Analysis of the frequency distribution suggests that the
“slow" cluster results from the nonlinear interactions of the dynamo
wave with itself through the cubic terms ⌫3, 13 in equations (18-19),
while the “fast" cluster appears through quadratic nonlinearity pro-
portional to the product of D and ⌫ (or 1) in equations (17), (19).
As nonlinearities in the models with and without imposed U-effect
have similar functional form, the temporal dynamics of both models
is qualitatively similar. Note that DMD is not able to separate ⌫ and
1 from the mixed signal ⌫B ; instead, it identifies different scales with
the same temporal dynamics as a single mode. Thus, DMD modes
from the “slow" cluster in figure 4(d) are slightly asymmetric and take
into account the systematic large-scale footprint of the dynamo wave
in 1 through term DG⌫. In the dynamo without imposed U-effect, the
modes corresponding to cubic nonlinear interactions remain uncon-
taminated with small scales, because cubic nonlinearity for 1 was
suppressed in this model, W = 0 compared to W = 10 in the case with
imposed U-effect. The model without imposed U-effect thus features
a better separation of spatial scales.

Furthermore, we investigated the influence of the DMD parame-
ters, rank and delay, on accuracy of scale detection. Fast-scale dy-
namics is not captured if a more conservative f2-criterion for A is
applied. Thus, rank A is important if dynamically relevant modes

are not the most energetic ones. We demonstrated that Hankel (high-
order) DMD improves the accuracy of approximation, recovering the
amplitudes and frequencies of weak dynamical components in the
data with more precision. In the dynamo with imposed U-effect, we
identified that the linearity assumption breaks for the weakest DMD
modes; Hankel DMD gives a better linear representation for these
modes, especially if the rank of the model is large enough to separate
mixed-frequency components in the these modes. This improvement
relies on spatiotemporal coherency of the corresponding dynamical
scales. In dynamical systems with a more broad-band spectrum, like
the one without imposed U-effect, the errors of linear model (8) will
be larger; nevertheless, Hankel DMD still considerably improves ac-
curacy of detection and modelling of energetic length scales. In this
case, further extensions of DMD method are of interest - for example,
the multiresolution DMD based on wavelet-like techniques proposed
by Dylewsky et al. (2019). We leave this analysis for the future work.

Finally, we give some notes on extension of this approach to more
realistic DNS of shear dynamos. There, the small-scale flow is fre-
quently forced by a helical forcing with a defined length scale, or
forcing wave number, but randomized in time (Tobias & Cattaneo
2013; Nigro et al. 2017). In this case, DMD is expected to repre-
sent poorly the small-scale flow and field components, because they
are incoherent in time. Nevertheless, it should be possible to extract
the large-scale, coherent components of the magnetic and velocity
fields corresponding to the “slow" modal cluster from such simula-
tions. As a final remark, our augmented benchmark dynamo model
has a well-defined scale separation while many turbulent dynamos
have continuous energy spectra. These dynamos are expected to give
continuous DMD spectra rather than clustered.
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APPENDIX A: INFLUENCE OF DMD RANK AND DELAY

In this section, we show how varying the rank and delay influences
accuracy of the linear DMD model, on the example of augmented dy-
namo with imposedU-effect (17-19), (22-23). As the dynamics in this
system is predominantly periodic, one would expect the DMD modes
computed in the data set to be nearly neutral (i.e. with <(l) ⇡ 0).
However, DMD eigenvaluesl2,l3 andl6, computed with the stan-
dard DMD algorithm with rank A = 14 according to f-criterion, are
dampened and have pronounced negative growth rates (figure A1a).
This will contribute to overall error (12) of the linear DMD approxi-
mation (8), since heavily dampened components will decay rapidly.
On the other hand, Hankel DMD with delay 3 = 9 results in all the
modes being close to neutral stability, reducing the error from 12%
to 2%.

Overall, there is no analytical expression for optimal 3 and A which
tend to increase with the data complexity. So far, we performed a
point-by-point analysis in the parameter space of (A, 3); it can be
generalized by spanning a range of A and 3 and tracking error (12) of
linear DMD approximation (8). Figure A1(b) presents this error as
a function of both A and 3, with the DMD models corresponding to
figures A1(a) denoted accordingly. With or without delay, increasing
rank reduces the error of the linear approximation. Increasing delay
improves accuracy at first, but when 3 is large, the dependence of er-
ror on 3 saturates. To get a better understanding of this behaviour, we
evaluated how delay affects the rank of Hankel data matrix&� (13).
We evaluate this in terms of rank Af (f2 ) of &� according to either
f or f2 criteria. These ranks are denoted in figure A1(b) by dotted
and solid lines, respectively. They estimate the number of indepen-
dent vector components required to describe certain percentage of
the information contained in &� . At first, their values increase with
3, indicating increase in data rank as newly added delayed system
states introduce new dynamical information. However, this trend sat-
urates around 3 = 5. Further increasing delay does not introduce
new dynamical components, and the representation error becomes
predominantly a function of A when 3 is large. A reasonable mini-
mum bound for 3 therefore is that the rank of matrix &� , defined
either through f, f2 criteria or numerical estimation of the matrix
rank, should saturate.

Another insight from figure A1(b) is that increasing delay does
not recover the dynamical components that were entirely removed
by truncating the POD modal basis at rank A, as demonstrated by
the abrupt decrease in error between A = 13 and A = 14, from
n ⇠ 0.1 to n ⇠ 0.01. At A = 14, the weak DMD harmonic with
frequency l2 first appears, improving accuracy. When A < 14, this
dynamical component is not identified by DMD, independently of
3. Note that FFT of ⌫B shows other, even weaker frequencies of
=(7l0), =(lD ± l2) in figure 4(b), not captured by standard or
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Figure A1. (a) Spectrum of DMD eigenvalues of the multiscale dynamo model without imposed U-effect; only eigenvalues with positive imaginary part
(frequency) are shown. Filled circles, standard DMD of A = 14; filled squares, Hankel DMD with rank A = 14 and delay 3 = 9; empty squares, Hankel DMD,
A = 6, 3 = 9. Dashed, neutral stability line. Superscipt � denotes frequencies obtained with Hankel DMD. (b) The model error | |⌫B � ⌫<>34;

B | |2/| |⌫B | |2 in
this model as a function of rank and delay. The colours are spaced logarithmically. Symbols represent the analysis parameters in panel (a). The empty circle
corresponds to standard DMD with A = 5 according to f2-criterion. Solid line, f2-criterion; dotted, f-criterion.

delayed DMD with A = 14. As a final note, using increasingly high
delays like those used in figure 4(a) can result in eigenvalues moving
up in the complex plane of figure A1(a) so that <(l) > 0 and
therefore some DMD modes become exponentially growing. In this
case, increased accuracy of frequency detection will be accompanied
by higher errors in the linear model (8).
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